Feature Extraction based on Sub-Pattern Multi-Directional 2DLDA
نویسنده
چکیده
A novel feature extraction method based on sub-pattern Multi-directional two-dimensional linear discriminate analysis (Sp-MD2DLDA) for face recognition is presented in this paper. In the proposed method, firstly, we apply directional 2DLDA (D2DLDA) to extract features in some initial directions, and then choose the effective directions from the initial directions for feature fusion after an evaluation. Secondly, divide the original images into small regions and apply D2DLDA to a set of partitioned sub-patterns to obtain features in the selected effective directions which complement each other. Finally, fuse these complementary features and use nearest neighbor classifier for classification. Since the proposed method not only can extract local features and reduce the impact of the variations in expression and illumination by dividing the original images into smaller sub-images, but also extract features in many more directions, we expect that it can improve the recognition performance. The experimental results on Yale and ORL databases show that the proposed SpMD2DLDA method has better classification performance than that of the other related methods.
منابع مشابه
Automatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملA Comparative Study on Vector-based and Matrix-based Linear Discriminant Analysis
Recently a kind of matrix-based discriminant feature extraction approach called 2DLDA have been drawn much attention by researchers. 2DLDA can avoid the singularity problem and has low computational costs and has been experimentally reported that 2DLDA outperforms traditional LDA. In this paper, we compare 2DLDA with LDA in view of the discriminant power and find that 2DLDA as a kind of special...
متن کاملNew Feature Extraction Approaches for Face Recognition
All the traditional PCA-based and LDA-based methods are based on the analysis of vectors. So, it is difficult to evaluate the covariance matrices in such a high-dimensional vector space. Recently, two-dimensional PCA (2DPCA) and two-dimensional LDA (2DLDA) have been proposed in which image covariance matrices can be constructed directly using original image matrices. In contrast to the covarian...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015